Skip to content

Messages and chat history

PydanticAI provides access to messages exchanged during an agent run. These messages can be used both to continue a coherent conversation, and to understand how an agent performed.

Accessing Messages from Results

After running an agent, you can access the messages exchanged during that run from the result object.

Both RunResult (returned by Agent.run, Agent.run_sync) and StreamedRunResult (returned by Agent.run_stream) have the following methods:

StreamedRunResult and complete messages

On StreamedRunResult, the messages returned from these methods will only include the final result message once the stream has finished.

E.g. you've awaited one of the following coroutines:

Note: The final result message will NOT be added to result messages if you use .stream_text(delta=True) since in this case the result content is never built as one string.

Example of accessing methods on a RunResult :

run_result_messages.py
from pydantic_ai import Agent

agent = Agent('openai:gpt-4o', system_prompt='Be a helpful assistant.')

result = agent.run_sync('Tell me a joke.')
print(result.output)
#> Did you hear about the toothpaste scandal? They called it Colgate.

# all messages from the run
print(result.all_messages())
"""
[
    ModelRequest(
        parts=[
            SystemPromptPart(
                content='Be a helpful assistant.',
                timestamp=datetime.datetime(...),
            ),
            UserPromptPart(
                content='Tell me a joke.',
                timestamp=datetime.datetime(...),
            ),
        ]
    ),
    ModelResponse(
        parts=[
            TextPart(
                content='Did you hear about the toothpaste scandal? They called it Colgate.'
            )
        ],
        usage=Usage(requests=1, request_tokens=60, response_tokens=12, total_tokens=72),
        model_name='gpt-4o',
        timestamp=datetime.datetime(...),
    ),
]
"""
(This example is complete, it can be run "as is")

Example of accessing methods on a StreamedRunResult :

streamed_run_result_messages.py
from pydantic_ai import Agent

agent = Agent('openai:gpt-4o', system_prompt='Be a helpful assistant.')


async def main():
    async with agent.run_stream('Tell me a joke.') as result:
        # incomplete messages before the stream finishes
        print(result.all_messages())
        """
        [
            ModelRequest(
                parts=[
                    SystemPromptPart(
                        content='Be a helpful assistant.',
                        timestamp=datetime.datetime(...),
                    ),
                    UserPromptPart(
                        content='Tell me a joke.',
                        timestamp=datetime.datetime(...),
                    ),
                ]
            )
        ]
        """

        async for text in result.stream_text():
            print(text)
            #> Did you hear
            #> Did you hear about the toothpaste
            #> Did you hear about the toothpaste scandal? They called
            #> Did you hear about the toothpaste scandal? They called it Colgate.

        # complete messages once the stream finishes
        print(result.all_messages())
        """
        [
            ModelRequest(
                parts=[
                    SystemPromptPart(
                        content='Be a helpful assistant.',
                        timestamp=datetime.datetime(...),
                    ),
                    UserPromptPart(
                        content='Tell me a joke.',
                        timestamp=datetime.datetime(...),
                    ),
                ]
            ),
            ModelResponse(
                parts=[
                    TextPart(
                        content='Did you hear about the toothpaste scandal? They called it Colgate.'
                    )
                ],
                usage=Usage(request_tokens=50, response_tokens=12, total_tokens=62),
                model_name='gpt-4o',
                timestamp=datetime.datetime(...),
            ),
        ]
        """
(This example is complete, it can be run "as is" — you'll need to add asyncio.run(main()) to run main)

Using Messages as Input for Further Agent Runs

The primary use of message histories in PydanticAI is to maintain context across multiple agent runs.

To use existing messages in a run, pass them to the message_history parameter of Agent.run, Agent.run_sync or Agent.run_stream.

If message_history is set and not empty, a new system prompt is not generated — we assume the existing message history includes a system prompt.

Reusing messages in a conversation
from pydantic_ai import Agent

agent = Agent('openai:gpt-4o', system_prompt='Be a helpful assistant.')

result1 = agent.run_sync('Tell me a joke.')
print(result1.output)
#> Did you hear about the toothpaste scandal? They called it Colgate.

result2 = agent.run_sync('Explain?', message_history=result1.new_messages())
print(result2.output)
#> This is an excellent joke invented by Samuel Colvin, it needs no explanation.

print(result2.all_messages())
"""
[
    ModelRequest(
        parts=[
            SystemPromptPart(
                content='Be a helpful assistant.',
                timestamp=datetime.datetime(...),
            ),
            UserPromptPart(
                content='Tell me a joke.',
                timestamp=datetime.datetime(...),
            ),
        ]
    ),
    ModelResponse(
        parts=[
            TextPart(
                content='Did you hear about the toothpaste scandal? They called it Colgate.'
            )
        ],
        usage=Usage(requests=1, request_tokens=60, response_tokens=12, total_tokens=72),
        model_name='gpt-4o',
        timestamp=datetime.datetime(...),
    ),
    ModelRequest(
        parts=[
            UserPromptPart(
                content='Explain?',
                timestamp=datetime.datetime(...),
            )
        ]
    ),
    ModelResponse(
        parts=[
            TextPart(
                content='This is an excellent joke invented by Samuel Colvin, it needs no explanation.'
            )
        ],
        usage=Usage(requests=1, request_tokens=61, response_tokens=26, total_tokens=87),
        model_name='gpt-4o',
        timestamp=datetime.datetime(...),
    ),
]
"""
(This example is complete, it can be run "as is")

Storing and loading messages (to JSON)

While maintaining conversation state in memory is enough for many applications, often times you may want to store the messages history of an agent run on disk or in a database. This might be for evals, for sharing data between Python and JavaScript/TypeScript, or any number of other use cases.

The intended way to do this is using a TypeAdapter.

We export ModelMessagesTypeAdapter that can be used for this, or you can create your own.

Here's an example showing how:

serialize messages to json
from pydantic_core import to_jsonable_python

from pydantic_ai import Agent
from pydantic_ai.messages import ModelMessagesTypeAdapter  # (1)!

agent = Agent('openai:gpt-4o', system_prompt='Be a helpful assistant.')

result1 = agent.run_sync('Tell me a joke.')
history_step_1 = result1.all_messages()
as_python_objects = to_jsonable_python(history_step_1)  # (2)!
same_history_as_step_1 = ModelMessagesTypeAdapter.validate_python(as_python_objects)

result2 = agent.run_sync(  # (3)!
    'Tell me a different joke.', message_history=same_history_as_step_1
)
  1. Alternatively, you can create a TypeAdapter from scratch:
    from pydantic import TypeAdapter
    from pydantic_ai.messages import ModelMessage
    ModelMessagesTypeAdapter = TypeAdapter(list[ModelMessage])
    
  2. Alternatively you can serialize to/from JSON directly:
    from pydantic_core import to_json
    ...
    as_json_objects = to_json(history_step_1)
    same_history_as_step_1 = ModelMessagesTypeAdapter.validate_json(as_json_objects)
    
  3. You can now continue the conversation with history same_history_as_step_1 despite creating a new agent run.

(This example is complete, it can be run "as is")

Other ways of using messages

Since messages are defined by simple dataclasses, you can manually create and manipulate, e.g. for testing.

The message format is independent of the model used, so you can use messages in different agents, or the same agent with different models.

In the example below, we reuse the message from the first agent run, which uses the openai:gpt-4o model, in a second agent run using the google-gla:gemini-1.5-pro model.

Reusing messages with a different model
from pydantic_ai import Agent

agent = Agent('openai:gpt-4o', system_prompt='Be a helpful assistant.')

result1 = agent.run_sync('Tell me a joke.')
print(result1.output)
#> Did you hear about the toothpaste scandal? They called it Colgate.

result2 = agent.run_sync(
    'Explain?',
    model='google-gla:gemini-1.5-pro',
    message_history=result1.new_messages(),
)
print(result2.output)
#> This is an excellent joke invented by Samuel Colvin, it needs no explanation.

print(result2.all_messages())
"""
[
    ModelRequest(
        parts=[
            SystemPromptPart(
                content='Be a helpful assistant.',
                timestamp=datetime.datetime(...),
            ),
            UserPromptPart(
                content='Tell me a joke.',
                timestamp=datetime.datetime(...),
            ),
        ]
    ),
    ModelResponse(
        parts=[
            TextPart(
                content='Did you hear about the toothpaste scandal? They called it Colgate.'
            )
        ],
        usage=Usage(requests=1, request_tokens=60, response_tokens=12, total_tokens=72),
        model_name='gpt-4o',
        timestamp=datetime.datetime(...),
    ),
    ModelRequest(
        parts=[
            UserPromptPart(
                content='Explain?',
                timestamp=datetime.datetime(...),
            )
        ]
    ),
    ModelResponse(
        parts=[
            TextPart(
                content='This is an excellent joke invented by Samuel Colvin, it needs no explanation.'
            )
        ],
        usage=Usage(requests=1, request_tokens=61, response_tokens=26, total_tokens=87),
        model_name='gemini-1.5-pro',
        timestamp=datetime.datetime(...),
    ),
]
"""

Processing Message History

Sometimes you may want to modify the message history before it's sent to the model. This could be for privacy reasons (filtering out sensitive information), to save costs on tokens, to give less context to the LLM, or custom processing logic.

PydanticAI provides a history_processors parameter on Agent that allows you to intercept and modify the message history before each model request.

Usage

The history_processors is a list of callables that take a list of ModelMessage and return a modified list of the same type.

Each processor is applied in sequence, and processors can be either synchronous or asynchronous.

simple_history_processor.py
from pydantic_ai import Agent
from pydantic_ai.messages import (
    ModelMessage,
    ModelRequest,
    ModelResponse,
    TextPart,
    UserPromptPart,
)


def filter_responses(messages: list[ModelMessage]) -> list[ModelMessage]:
    """Remove all ModelResponse messages, keeping only ModelRequest messages."""
    return [msg for msg in messages if isinstance(msg, ModelRequest)]

# Create agent with history processor
agent = Agent('openai:gpt-4o', history_processors=[filter_responses])

# Example: Create some conversation history
message_history = [
    ModelRequest(parts=[UserPromptPart(content='What is 2+2?')]),
    ModelResponse(parts=[TextPart(content='2+2 equals 4')]),  # This will be filtered out
]

# When you run the agent, the history processor will filter out ModelResponse messages
# result = agent.run_sync('What about 3+3?', message_history=message_history)

Keep Only Recent Messages

You can use the history_processor to only keep the recent messages:

keep_recent_messages.py
from pydantic_ai import Agent
from pydantic_ai.messages import ModelMessage


async def keep_recent_messages(messages: list[ModelMessage]) -> list[ModelMessage]:
    """Keep only the last 5 messages to manage token usage."""
    return messages[-5:] if len(messages) > 5 else messages

agent = Agent('openai:gpt-4o', history_processors=[keep_recent_messages])

# Example: Even with a long conversation history, only the last 5 messages are sent to the model
long_conversation_history: list[ModelMessage] = []  # Your long conversation history here
# result = agent.run_sync('What did we discuss?', message_history=long_conversation_history)

RunContext parameter

History processors can optionally accept a RunContext parameter to access additional information about the current run, such as dependencies, model information, and usage statistics:

context_aware_processor.py
from pydantic_ai import Agent
from pydantic_ai.messages import ModelMessage
from pydantic_ai.tools import RunContext


def context_aware_processor(
    ctx: RunContext[None],
    messages: list[ModelMessage],
) -> list[ModelMessage]:
    # Access current usage
    current_tokens = ctx.usage.total_tokens

    # Filter messages based on context
    if current_tokens > 1000:
        return messages[-3:]  # Keep only recent messages when token usage is high
    return messages

agent = Agent('openai:gpt-4o', history_processors=[context_aware_processor])

This allows for more sophisticated message processing based on the current state of the agent run.

Summarize Old Messages

Use an LLM to summarize older messages to preserve context while reducing tokens.

summarize_old_messages.py
from pydantic_ai import Agent
from pydantic_ai.messages import ModelMessage

# Use a cheaper model to summarize old messages.
summarize_agent = Agent(
    'openai:gpt-4o-mini',
    instructions="""
Summarize this conversation, omitting small talk and unrelated topics.
Focus on the technical discussion and next steps.
""",
)


async def summarize_old_messages(messages: list[ModelMessage]) -> list[ModelMessage]:
    # Summarize the oldest 10 messages
    if len(messages) > 10:
        oldest_messages = messages[:10]
        summary = await summarize_agent.run(message_history=oldest_messages)
        # Return the last message and the summary
        return summary.new_messages() + messages[-1:]

    return messages


agent = Agent('openai:gpt-4o', history_processors=[summarize_old_messages])

Testing History Processors

You can test what messages are actually sent to the model provider using FunctionModel:

test_history_processor.py
import pytest

from pydantic_ai import Agent
from pydantic_ai.messages import (
    ModelMessage,
    ModelRequest,
    ModelResponse,
    TextPart,
    UserPromptPart,
)
from pydantic_ai.models.function import AgentInfo, FunctionModel


@pytest.fixture
def received_messages() -> list[ModelMessage]:
    return []


@pytest.fixture
def function_model(received_messages: list[ModelMessage]) -> FunctionModel:
    def capture_model_function(messages: list[ModelMessage], info: AgentInfo) -> ModelResponse:
        # Capture the messages that the provider actually receives
        received_messages.clear()
        received_messages.extend(messages)
        return ModelResponse(parts=[TextPart(content='Provider response')])

    return FunctionModel(capture_model_function)


def test_history_processor(function_model: FunctionModel, received_messages: list[ModelMessage]):
    def filter_responses(messages: list[ModelMessage]) -> list[ModelMessage]:
        return [msg for msg in messages if isinstance(msg, ModelRequest)]

    agent = Agent(function_model, history_processors=[filter_responses])

    message_history = [
        ModelRequest(parts=[UserPromptPart(content='Question 1')]),
        ModelResponse(parts=[TextPart(content='Answer 1')]),
    ]

    agent.run_sync('Question 2', message_history=message_history)
    assert received_messages == [
        ModelRequest(parts=[UserPromptPart(content='Question 1')]),
        ModelRequest(parts=[UserPromptPart(content='Question 2')]),
    ]

Multiple Processors

You can also use multiple processors:

multiple_history_processors.py
from pydantic_ai import Agent
from pydantic_ai.messages import ModelMessage, ModelRequest


def filter_responses(messages: list[ModelMessage]) -> list[ModelMessage]:
    return [msg for msg in messages if isinstance(msg, ModelRequest)]


def summarize_old_messages(messages: list[ModelMessage]) -> list[ModelMessage]:
    return messages[-5:]


agent = Agent('openai:gpt-4o', history_processors=[filter_responses, summarize_old_messages])

In this case, the filter_responses processor will be applied first, and the summarize_old_messages processor will be applied second.

Examples

For a more complete example of using messages in conversations, see the chat app example.